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Introduction

•  What is MINOS? 
•  Neutrino Physics 

– Oscillation Basics 
– MINOS Physics 

•  The Experiment 
– NuMI neutrino beam 
– MINOS detectors 

•  The Analyses 
– Neutrinos and 

Antineutrinos 
•  The Results 
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The MINOS Collaboration


Argonne • Athens • Benedictine • Brookhaven • Caltech • 
Cambridge • Campinas • Fermilab • Harvard • Holy Cross • IIT 


Indiana • Iowa State • Lebedev • Livermore 

Minnesota-Twin Cities • Minnesota-Duluth•  Otterbein • Oxford 

Pittsburgh • Rutherford • Sao Paulo • South Carolina

Stanford • Sussex • Texas A&M • Texas-Austin • Tufts • UCL


 Warsaw • William & Mary


140 scientists 
31 institutions 
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What is MINOS?

•  Three components: 

– NuMI high-intensity neutrino beam 
– Near Detector at Fermilab 
– Far Detector in Soudan, MN 

•  Measure oscillations by looking for 
disappearance between the detectors 

•  Detectors are magnetized – unique among 
oscillation experiments 
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Neutrino Physics


– Oscillation Basics

– MINOS Physics
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Neutrino Masses and Mixing


•  With three active neutrinos there are two 
independent mass splittings:  
–    
–    

•  MINOS is sensitive to the larger of the 
mass splittings and θ23 
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Measuring Oscillations
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Unoscillated


Oscillated


Monte Carlo!

  νμ spectrum! spectrum ratio!

Monte Carlo"
sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 "

Characteristic 
Shape


Monte Carlo!
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•  Measurements of |Δm2
atm| and sin2(2θ23) via 

νµ disappearance 

•  Measurements of |Δm2
atm| and sin2(2θ23) via 

νµ disappearance 

•  Search for sub-dominant νµ  νe oscillations 
via νe appearance 

•  Search for sterile ν, CPT/Lorentz violation 

•  Atmospheric neutrino and cosmic ray physics 

•  Study ν interactions and cross sections in 
Near Detector 

9


MINOS Physics
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Why study νµ and νµ? 

•  Antineutrino parameters 
are less precisely known. 
–  No direct precision  

measurements 
–  MINOS is the only oscillation 

experiment that can do event- 
by-event separation 

•  Differences may imply new physics in the neutrino sector 
manifested as a difference in the effective mass-splitting. 

Alex Himmel
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€ 

P νµ →  νµ( ) = P ν µ →  ν µ( )? 

P. Adamson, et. al, Phys. Rev. Lett. 101:131802 (2008) 
Y. Ashie, et. al., Phys. Rev. D 71:112005 (2005) 
Y. Ashie, et. al., Phys. Rev. D 71:112005 (2005) 
M.C. Gonzalez-Garcia & M. Maltoni, Phys. Rept. 460:1-129 (2008) 



Why study νµ and νµ? 
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The Experiment


– NuMI neutrino beam

– MINOS detectors
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The NuMI Beam


π- 

π+ 
120 GeV 
protons 
from MI


Target
 Focusing Horns


2 m 

675 m


νµ 

νµ 

15 m
 30 m
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•  120 GeV protons incident on a thick, 
segmented graphite target 
–  Producing a spray of hadrons  

•  Magnetic horns can focus either sign 
–  Reverse direction of current 

•  Enhance the νµ flux by focusing π+, K+ 

–  And vice versa 

•  Adjustable energy 
–  Move the target relative to the horns. 

Low Energy

Medium Energy

High Energy


Decay Pipe




Neutrino Beam Composition


•  Low energy 
neutrino mode 

•  Near detector CC 
interactions: 
–  91.7% νµ  
–  7.0% νµ  
–  1.3% νe + νe 

Alex Himmel
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Simulated Near Detector 



Antineutrinos in Neutrino Mode


•  We’ve already presented an 
analysis of the antineutrino 
component of the neutrino 
beam. 

•  This sample has very poor 
sensitivity to oscillations.  

Alex Himmel
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Neutrino Mode
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Antineutrino Mode
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νµ 

120 GeV 
protons 
from MI


Monte Carlo

Neutrino mode 
Horns focus π+, K+ 

€ 

νµ = 91.7%
ν µ = 7.0%

νe +ν e =1.3%

Monte Carlo

Antineutrino mode 
Horns focus π-, K- 

€ 

ν µ = 39.9%
νµ = 58.1%

νe +ν e = 2.0%



Antineutrino Cross-section


Why is the peak lower by a factor of ~3? 
•  x1.3 from lower π- production 
•  x2.3 from lower interaction cross-section 
Also explains why the high energy tail is predominantly neutrinos. 
Alex Himmel
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Eur. Phys. J. C 49 897 (2007) Phys. Rev. D 81 072002 (2010) 
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NuMI Beam Performance
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7.24 ×1020  POT νµ  mode
Current νµ  Analysis

€ 

1.71×1020  POT
ν µ  mode
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MINOS Detectors


B 
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1 in thick Steel 

Strips in alternating 
directions allow 3D 
event reconstruction 

1.3 T toroidal 
magnetic field can 
distinguish neutrinos 
and antineutrinos 

1 cm thick, 4.1 cm wide 
Plastic Scintillator 

Read out on 
wavelength-shifting 
fibre to multi-anode 

PMTs 



MINOS 
Detectors


Near Detector 
•  980 tons 
•  100 m depth 
•  1 km from the target 

Far Detector 
•  5,400 tons 
•  700 m in depth 
•  735 km from the target 
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+ 

MINOS Event Topologies
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νµ CC Event NC Event νµ CC Event 

Coil Coil 

µ- µ+ 

Simulated Events 

ν  



The Analyses


Neutrinos and Antineutrinos
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Oscillation Analysis in Brief

•  Select (anti)neutrino events in the detectors 

•  Measure their energies to produce Near and Far detector 
spectra 

•  Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations  

•  Fit the Far Detector data to measure oscillations 

Alex Himmel
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The Neutrino Analysis

Since our previous measurement… 

–  P. Adamson, et. al, Phys. Rev. Lett. 101:131802 
(2008) 

•  Additional data 
–  3.4×1020 to 7.2×1020 protons-on-target 

•  Improvements in the analysis 
–  Updated simulation and reconstruction 
–  New selection improves low-energy 

efficiency 
–  New shower energy estimator with 30% 

better low-energy resolution 
–  Split the data set into bins of resolution 
–  No charge sign cut – reclaim mis-

identified neutrino events at low energy 
Alex Himmel
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The Antineutrino Analysis

•  Essentially the neutrino analysis 

of 2008 
–  No resolution binning, shower 

estimator,  new selector 
–  Only stopped taking antineutrino 

data on March 22nd  

•  What’s different with 
antineutrinos? 
–  Lower statistics ~1/12th events 
–  Larger wrong-sign component 
–  Interactions are less hadronic 
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The Antineutrino Analysis
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Monte Carlo

Neutrino mode 

€ 

νµ = 91.7%
ν µ = 7.1%

νe +ν e =1.3%

Monte Carlo

Antineutrino mode 

€ 

ν µ = 39.9%
νµ = 58.1%

νe +ν e = 2.0%
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•  Essentially the neutrino analysis 
of 2008 
–  No resolution binning, shower 

estimator,  new selector 
–  Only stopped taking antineutrino 

data on March 22nd  

•  What’s different with 
antineutrinos? 
–  Lower statistics ~1/12th events 
–  Larger wrong-sign component 
–  Interactions are less hadronic 



The Antineutrino Analysis
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•  Essentially the neutrino analysis 
of 2008 
–  No resolution binning, shower 

estimator,  new selector 
–  Only stopped taking antineutrino 

data on March 22nd  

•  What’s different with 
antineutrinos? 
–  Lower statistics ~1/12th events 
–  Larger wrong-sign component 
–  Interactions are less hadronic 
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Oscillation Analysis in Brief

•  Select (anti)neutrino events in the detectors 

•  Measure their energies to produce Near and Far detector 
spectra 
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Common Selection

•  Basic selection 

–  In-time with the spill 
–  In the fiducial volume 
–  At least 1 reconstructed track 

•  CC/NC separation using a 
kNN algorithm 
–  Compare to monte carlo events 

•  4-parameter comparison 
–  Track length 
–  Mean energy of track hits 
–  Energy fluctuations along the 

track 
–  Transverse track profile 

Alex Himmel
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Main Selector
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–  In the fiducial volume 
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Neutrino Selection


•  Added a second selector that accepts lower energy tracks 
–  Number of planes in the track 
–  Energy deposition at the end of the track 
–  Amount of scattering 

•  The final selection is a logical OR of these two cuts. 
Alex Himmel
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Neutrino Selection
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•  Increase sensitivity by improving efficiency (89% vs. 87%) 
at the expense of contamination (1.7% vs. 1.2%) 

Monte Carlo 



Antineutrino Selection

•  Accept only events with positive reconstructed charge 

•  Use the Main CC/NC Selector from the neutrino analysis 
–  Removes NC and high-y CC interactions 

•  Data/MC agreement comparable to that seen for neutrinos. 
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 44


Accept
Accept


Main Selector




Antineutrino Efficiency & Purity


High energy νµ contamination does not  
affect the oscillation result 
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Signal Bkgd. 
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6-20 GeV 38
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Oscillation Analysis in Brief

•  Select (anti)neutrino events in the detectors 

•  Measure their energies to produce Near and Far detector 
spectra 

•  Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations  

•  Fit the Far Detector data to measure oscillations 
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New Shower Energy Estimator

•  Construct a three-parameter kNN using: 

–  the shower energy within 1 m of the track vertex 
–  the number of planes in the shower 
–  the energy in the second reconstructed shower 

•  Estimator is the mean energy of the nearest neighbors 
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~30%  better 
resolution 

below 2 GeV Original Energy 
New Estimator 

Monte Carlo 



Neutrino Near Detector Data


Alex Himmel
 48


•  Majority of data 
taken in Low  
Energy Beam 

•  High Energy Beam 
gives us more 
events above the 
oscillation dip 

•  Other beam 
configurations 
used for 
systematics, 
commissioning, 
MC tuning 



Antineutrino Near Detector Data
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Flux and cross-
section uncertainties 
cancel when 
extrapolated from 
Near to Far detector. 



Oscillation Analysis in Brief
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spectra 
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Detector spectrum independent of oscillations  

•  Fit the Far Detector data to measure oscillations 
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Near-to-Far Extrapolation


•  The Near Detector and Far Detector 
spectra are not identical. 
– Due to π/K decay kinematics, neutrino 

energy varies with angle.  
– The Near Detector covers a wider solid 

angle 
– Higher energy π travel further and decay 

closer to the Near Detector 
Alex Himmel
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•  A beam matrix transports measured Near spectrum to Far 

•  Matrix encapsulates knowledge of meson decay kinematics and 
beamline geometry 

•  MC used to correct for energy smearing and acceptance 

Beam Matrix Extrapolation


Alex Himmel
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Resolution Binning

•  Improve statistical power by separating high and low 

resolution events. 

•  MC parameterization of the energy resolution 

•  6 Resolution bins 
–  5 bins for events with negative reconstructed curvature 
–  1 bin for events with positive reconstructed curvature (30% true νµ) 

Alex Himmel
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Oscillation Analysis in Brief
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Analysis Improvements
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Monte Carlo

Sensitivity




Neutrino Systematics
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•  Effect of uncertainties estimated 
by fitting systematically shifted 
MC 

•  Analysis is still statistically limited 

•  The 4 largest systematics are 
included as penalty terms in the fit. 

Monte Carlo 



Antineutrino Systematics
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•  The antineutrino analysis is even 
more statistically limited. 

•  The two analyses have very 
similar systematics 
– Though sizes of the effects are not 

the same. 

Monte Carlo 



The Results
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Blind Analysis

•  These results are obtained from blind analyses 

– Finalized before looking at the full Far Detector data 
•  selection cuts 
•  data samples 
•  extrapolation techniques 
•  fitting routines 
•  systematic uncertainties 

•  No changes have been made after box opening 

And so…on to the results! 
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Far Detector Neutrino Data


 2,451 expected 
without oscillations 

 1,986 observed events 
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Far Detector Neutrino Data
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 2,451 expected 
without oscillations 

 1,986 observed events 

Oscillations fit the data 
well – 66% of fake 
experiments have a 
worse χ2  



Far Detector Neutrino Data


•  Can see the characteristic dip of oscillations. 
•  Disfavor in a statistics-only fit: 

– Pure decay† at  > 6σ 
– Pure decoherence‡ at  > 8σ 

Alex Himmel
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†G.L. Fogli et al., PRD 67:093006 (2003) 
‡V. Barger et al.,PRL 82:2640 (1999) 



Neutrino Contour
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€ 

Δmatm
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sin2 2θ23( ) =1
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Neutrino Contour
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Far Detector Antineutrino Data


 155 expected 
without oscillations 

 97 observed events 
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Far Detector Data


•  Good data/mc agreement in  
charge/momentum 

•  Antineutrinos focused inwards 

•  Neutrinos defocused outwards 
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Charge/Momentum 



Far Detector Data


•  Data shows the expected distributions of hadronic energy 
fraction for both neutrinos and antineutrinos 
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Far Detector Antineutrino Data


 155 expected without oscillations "
 97 observed events 
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Far Detector Antineutrino Data


 155 expected without oscillations "
  97 observed events 
No-oscillations hypothesis is disfavored at 6.3σ 
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Antineutrino Contour


•  Contour is determined 
using Feldman-Cousins. 
–  Includes systematics 
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€ 

Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11



Antineutrino Contour


•  Contour is determined 
using Feldman-Cousins. 
–  Includes systematics 

•  Dot-dash line is a fit to 
all non-MINOS data 

 M.C. Gonzalez-Garcia and M.  
Maltoni Phys. Rept. 460, 2008 
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€ 

Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11



Comparison to Neutrinos


•  Dashed line shows the antineutrino prediction at the 
neutrino best fit point.  
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Neutrinos and Antineutrinos
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€ 

Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11

€ 

Δmatm
2 = 2.35−0.08

+0.11 ×10−3  eV2

sin2 2θ23( ) > 0.91 (90% C.L.)



With More Antineutrinos…


•  Even just another 4.5 months of running (double the 
current data set) would decrease the error by ~30%. 
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Conclusions
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•  MINOS has the most precise measurement of |Δm2
atm|  

•  MINOS has the first direct, precision measurement |Δm2
atm| 

•  Measured with double the neutrino data and a dedicated 
antineutrino run 

•  With more antineutrino beam we can rapidly improve the 
precision on the antineutrino oscillation parameters 

€ 

Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11

€ 

Δmatm
2 = 2.35−0.08

+0.11 ×10−3  eV2

sin2 2θ23( ) > 0.91 (at 90%)
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Peak vs. Tail


Target
 Focusing Horns


2 m 

675 m
15 m
 30 m
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•  νµ’s from high-pt π-’s 
–  Focused by horns 

•  νµ’s from low-pt π+’s 
–  Pass through horn 

center 

120 GeV 
protons 
from MI


Decay Pipe


Monte Carlo 
Focused 

Monte Carlo 
Unfocused 

π+ 

π- νµ 

νµ 



Neutrino mode 
Horns focus π+, K+ 

€ 

νµ = 91.7%
ν µ = 7.0%

νe +ν e =1.3%

Monte Carlo!
Antineutrino mode 
Horns focus π-, K- 

€ 

ν µ = 39.9%
νµ = 58.1%

νe +ν e = 2.0%

Peak vs. Tail
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•  νµ’s from low-pt π-’s 
–  Focused by horns 

•  νµ’s from high-pt π+’s 
–  Pass through horn 

center 

Monte Carlo 
Focused 

Monte Carlo 
Unfocused 

Monte Carlo!



Helium in the Decay Pipe

•  At the beginning of Run III, helium was added to the decay pipe 

to prevent failure of the upstream window. 
–  Our previous flux simulation could not model the helium using GFLUKA 

as part of GEANT3 

–  Replaced it with a new flux simulation that is all FLUKA which 
accurately predicts the effects of helium. 
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Target Degradation

•  Began during Run II and continued through Run III 
•  The exact mechanism of the decay is not known 
•  Missing fins at the shower max in the target model the energy-

dependent effect 
•  Target to undergo post-mortem later this year  
•  Cancels between the two detector 
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Removing the Charge Cut

•  The positive-curvature 

sample is ~30% true 
CC neutrinos. 

•  If the antineutrinos are 
oscillated at the 
antineutrino best fit 
point, makes a change 
only in 3rd significant 
digit of the result. 
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Change in Systematics
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Monte Carlo 

2008 2010 



Neutrino Spectrum
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Neutrino Contour by Run
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MINOS  
Preliminary 



Antineutrino Contour
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€ 

Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11

A combined analysis 
using all antineutrino 

data is planned.




Atmospheric Neutrinos
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R
ν /ν
data / R

ν /ν
MC = 1.04−0.10

+0.11 ± 0.10

Δm2 − Δm2 = 0.4−1.2
+2.5 ×10−3eV2
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